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TECHNICAL MEMORANDUM X-172

AERODYNAMIC CHARACTERISTICS AT

MACH N]3MBERS OF 1.41 AND 2.01 OF A SERIES OF CRANKED

WINGS RANGING IN ASPECT RATIO FROM 4.00 TO 1.74 IN

COMBINATION WITH A BODY

By John R. Sevler, Jr.

SUMMARY

A program has been conducted in the Langley 4- by 4-foot supersonic

pressure tunnel to determine the effects of certain wing plan-form vari-

ations on the aerodynamic characteristics of wing-body combinations at

supersonic speeds. The present report deals with the results of tests of

a family of cranked wing plan forms in combination with an oglve-cylinder

body of revolution. Tests were made at Mach numbers of 1.41 and 2.01 at

corresponding values of Reynolds number per foot of 3.0 × l06 and

2.5 X 10 6.

Results of the tests indicate that the best overall characteristics

were obtained with the low-aspect-ratio wings. Plan-form changes which

involved decreasing the aspect ratio resulted in higher values of maximum

lift-drag ratio, in addition to large increases in wing volume. Indica-

tions are that this trend would have continued to exist at aspect ratios

even lower than the lowest considered in the present tests. Increases in

the maximum lift-drag ratio of about 15 percent over the basic wing were

achieved with practically no increase in drag.

The severe longitudinal stability associated with the basic cranked

wing was no longer present (within the limits of the present tests) on

the wings of lower aspect ratio formed by sweeping forward the inboard

portion of the trailing edge.
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INTRODUCTION

The selection of the wing plan form is one of the major decisions
facing the aircraft designer. A good wing plan form should have low
drag, high aerodynamic efficiency, and should provide a maximumof
volume for fuel stowage. At the sametime, it must have good structural
characteristics and be so designed as not to result in poor stability
characteristics. Of course, the final selection of the plan form will
be a compromisebetween these requirements and will dependon their
relative importance in a particular application. The present report
presents the results of one phase of a plan-form program which was
undertaken in the Langley 4- by 4-foot supersonic pressure tunnel to
investigate the longitudinal stability characteristics of a series of
plan forms with particular interest in evaluating their relative aerody-
namic effieiencies.

From the standpoint of high aerodynamic efficiency at supersonic
speeds, the highly swept wing is generally supericr to other types of
wings of comparable thickness ratios. However, one of the greatest
disadvantages of the highly swept plan form has been the severe pitchup
characteristic which is inherently associated with this plan form,
especially in the transonic and low supersonic speed range. Occurring
at lift coefficients low enough to be in the range of routine maneuvers,
this instability cannot be eliminated by the usual "fixes" such as fences,
leading-edge chord-extensions, boundary-layer ram_s, and so forth, as
demonstrated in the limited tests of reference 1. For this reason, then,

the highly swept wing has met with little accepta[ce in current aircraft

design.

One of the ideas advanced to alleviate the d_fficulty of pitchup

has been the cranked wing. The cranked wing retains much of the effi-

ciency of the conventional highly swept wing yet _s the advantage that

the loss in lift in the tip region (which causes _itchup) is less likely

to occur due to the fact that the outboard portlor_ of the wing is only

moderately swept. In practice, however, the cra_md wing is usually not

successful in eliminating pitchup entirely but docks succeed in post-

poning the instability to a somewhat higher lift coefficient than for the

conventional highly swept wing.

The present report compares a conventional _o swept wing with a

cranked wing swept 60 ° inboard and 50° outboard and deals with several

plan-form variations (based on work done in refs. 2 and 5) of the basic

cranked wing designed to evaluate the relative merits of plan-form vari-

ation on aerodynamic efficiency and on the pitchup problem. Tests were

made of the various wings in combination with an ogive-cylinder body of

revolution at Mach numbers of 1.41 and 2.01 at corresponding Reynolds

numbers per foot of 3.0 × 106 and 2.5 × 106 • The plan-form variations
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covered a wide range of aspect ratio (4.00 to 1.74) and taper ratio
(0.33 to 0.09). Thickness ratio of the basic cranked wing was 0.06
and was constant along the span. The spanwise variation in absolute
thickness remained the samefor all the wings tested.

SYMBOLS

b

c

Cr

CD

CD ,rain

CD,b

(CD,b)mi n

CL

CL,b

C m

wing span

airfoil chord

airfoil chord at wing root (body center line)

 b/2 c2 dy
mean aerodynamic chord_ dO

b/2 c dy

drag coefficient based on area of respective wing, D/qS

minim_n value of CD

drag coefficient based on area of basic wing, D/qS b

minimum value of CD,b

lift coefficient based on respective wing areaj L/qS

lift coefficient based on basic wing area, L/qS b

lift-curve slope of respective wings, dCL/d_ , per degree;

measured over linear portion of lift curve

lift-curve slope of basic wing_ dCL_b/d_ per degree;

measured over linear portion of lift curve

pitching-moment coefficient, m/qS_

D drag
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M

q

S

Sb

Y

llft

pitching moment about the assumed center-of-gravity location

(fig. l(b))

free-stream Mach number

free-stream dynamic pressure

wing area including that portion blanketed by fuselage

area of basic cranked wing including that portion blanketed by

fuselage

spanwise distance measured pe1_endicular to plane of symmetry
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APPARATUS

Tunnel

All tests were conducted in the Langley 4- by 4-foot supersonic

pressure tunnel which is a rectangular, closed-throat, single-return

wind tunnel designed for a Mach number range of 1.2 to 2.2. The test

section Mach number is varied by deflecting horizontal flexible walls

against a series of fixed interchangeable templates which have been

designed to produce uniform flow in the test section. For the present

investigation, the test section Mach numbers were 1.41 and 2.01; the

test section heights were 4.44 feet and 5.10 feet, respectively; and

the test section width was 4.5 feet.

Models

Wings.- The wings were constructed as indicated in figures i and 2.

Onto a steel spar, there could be attached a comb[nation of forward and

rearward inserts. In addition to the inserts whizh made up the basic

60 ° (inboard sweep)-_D ° (outboard sweep) swept wing, there were inserts

which provided an increase of 67 percent to the basic center-line chord

in the forward direction, and increases of 67, 135, and 200 percent in

the rearward direction. For one series of inserts, the extension to the

basic wing tapered linearly to zero at the 50-perzent-semispan station

(fig. l(a)), while on the other series (fig. l(b)), the extension

tapered linearly to zero at the 70-percent-semispan station.

Photographs of representative wings are shown in figure 2. In

order to identify the various configurations, a two unit numbering system,



with subscripts associated with each unit, has been adopted. The first
number in the designation (0 or 67) refers to the leading-edge modifica-
tion and designates the percentage by whlch the length of the center-
line chord of the basic wing has been increased by the forward insert.
The associated subscript refers to the spanwise extent (in percent semi-
span) of the leading-edge modification. Similarly, traillng-edge modi-
fications are denoted by the second numberof the designation (0, 67,
133, or 200) which refers to the percentage by which the center-llne
chord of the basic wing is increased by the rearward insert. As before,
the subscript (_0 or 70) refers to the spanwise extent (in percent
semispan) of the modification. For example, the configuration designated
67_0-20070 (fig. 2(b)) refers to the wing on which the leading edge has
been modified by increasing the center-line chord of the basic wing by
67 percent in the forward direction and tapering the chord increase
linearly to zero at the _0-percent-semispan station; similarly, the
trailing edge of the basic cranked wing has been modified by increasing
the basic center-line chord by 200 percent in the rearward direction and
tapering this modification linearly to zero at the 70-percent-semispan
station.

In the case where a number in the designation is variable, that num-
ber will be replaced with an X. For example, when data from the family
of wings with the basic leading edge are plotted as a function of
trailing-edge extensions extending to the _K)-percent semlspan, the desig-
nation will be O-X_0.

As shownin figure 3, the airfoil section for the forward 1/3 chord
of the basic wing was madeup of the forward 1/3 of an NACA63-006 airfoil
section and was combinedwith a slab for the remaining 2/3 chord, resulting
in a blunt trailing edge with a thickness equal to the maximumthickness of
the airfoil at that particular spanwise station. It was necessary to mod-
ify the 63-series thickness distribution slightly near the 1/3-chord sta-
tion in order to fair it in smoothly with the slab. For the wings with
extensions, a leading edge identical to the basic wing was used and was
combinedwith a slab having a length dependent upon the amount of
extension.

The basic wing had a constant thickness ratio of 0.06. For the
wings with extensions, the thickness ratio varied from one wing to the
next depending on the amount of extension; however, on all the wings,
the spanwise variation in absolute thickness remained the sameas on the
basic wing.

The wings were designed in the above manner so as to makepossible a
wide range of plan forms without causing the construction effort to become
prohibitively large. Although the airfoil section used was not particu-
larly good from the standpoint of aerodynamic efficiency, it was considered



adequate to fulfill the aim of this investigation, which was to evaluate
the relative merits of wings with various plan forms but with the same
variation in absolute thickness.

Sketches of the configuration tested along with pertinent geometric
characteristics are presented in figure 4.

Fuselage.- An ogive-cylinder fuselage was tested in combination with

the above-described wings mounted in the midposition (fig. i). The

fineness ratio of the ogive was 3.5.

A three-component internal strain-gage balance was housed within the

fuselage for the purpose of measuring normal force, chord force, and

pitching moment. Angle of attack was measured optically during the tests

by means of a prism mounted on the fuselage.

TESTS

Tests were conducted at Mach numbers of 1.41 and 2.01 at corresponding

Reynolds numbers per foot of 3.0 × lO6 and 2.5 x lO 6, respectively. Tunnel

stagnation pressure was lO pounds per square inch absolute and stagnation

temperature was lOO o F. The tunnel dewpoint was maintained at a suffici-

ently low value to eliminate significant condensation effects.

In order to reduce the amount by which the base pressure needed to be

adjusted to correspond to free-stream static pressure, a base plug was

installed for all tests (fig. 1). The plug was concentric with the model

base and was equal to the base diameter. A gap of approximately 1/16 inch

separated the model base and the plug.

All data presented herein are for natural transition on the wing and

body.

RESULTS AND DISCUSSI(_

General Remarks

As mentioned previously, all the wings _ad the same spanwise varia-

tion in absolute thickness. Such a design was considered to be more

reasonable than one in which the thickness ratio t/c was constant for

all wings, since if some compromise value of t/c had been selected and

held constant for all wings, it would have resulted in an unrealistic_lly

low t/c for the high-aspect-ratio wings and an unrealistically high
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t/c for the low-aspect-ratio wings. In actual practice, the design

considerations involved in selecting the wing thickness would be a com-

plex set of compromises involving volume required, bending moment, type

of structure, flutter characteristics, etc.

Although the thickness ratio varied from one wing to the next, the

streamwise section ahead of the slab remained the same for all wings,

(fig. 3). Thus, wings with the same leading-edge configuration had about

the same thickness drag. The 6750 leading-edge configuration had a some-

what lower thickness drag (over the inboard 50-percent semispan) than

the 0 leading-edge configuration as a result of its thinner sections

normal to the leading edge. In addition, as a result of the slab

section the various wings had a base drag which varied in a manner depend-

ent upon how the base pressure was affected by the boundary layer on the

wing. No attempt was made in the present tests to estimate this effect.

Presentation of Results

A comparison is made in figure 5 of the basic wing-body combinations

having the 60 ° swept and the 60o-}0 ° cranked wings which are identical

except in plan form. In figures 6 to 9 are presented the results from

the series of cranked wing-body combinations, and in figure i0 the body-

alone characteristics are presented. It should be noted that the refer-

ence areas and lengths used to nondimensionalize the forces and moments

for the various wing-bodycombinations are those associated with each

wing. The reference axis for the pitching moments, however, is a common

one for all wings.

Plots of the basic data for the various cranked wing-body combina-

tions tested are presented in figures 6 to 9. The most pertinent results

from these data have been plotted as a function of trailing-edge extension

in figures ll to 15, and it is these summary plots which will primarily be

the subject of the present discussion. In discussing the relative merits

of the various wing plan forms it should be kept in mind that the differ-

ences in areas (from one plan form to another) used to nondimensionalize

the forces can cause changes in the coefficients which are not necessaril2

reflected in the forces themselves. For example, as extensions are added

to the basic wing, the drag coefficient is reduced but in most cases the

actual drag force is increased. For this reason, then, plots of minimum

drag coefficients, lift-curve slope, and drag-due-to-lift Parameter are

presented (figs. ll to 13) in which the coefficients are based both on

the respective wing areas and on the area of the basic wing. The latter

method then permits a valid comparison of actual force variations between

the different wings since the coefficients for all the wings are based on

a common area.



Basic Wings

The comparison of the conventional swept wing and the cranked wing

in figure 9 shows the cranked wing to have a somewhat lower value of

(L/D)ma x occurring at a higher CL . In addition, the cranked configura-

tion will have a somewhat higher drag than the swept configuration when

both are operating (with the same wing loading) at the appropriate

altitudes to fly at CL for (L/D)max. It should be noted that although

pitchup does occur at a higher lift coefficient than (L/D)max the mar-

gin of safety might not be considered suffic:kent to allow operation of

either configuration at (L/D)max.

Stability

Examination of figure _ shows the severe pitchup characteristics of

the basic 60 ° swept wing occurring at a lift coefficient of about 0.3.

The same figure indicates that the cranked w:!i.ngis ineffective insofar as

eliminating the pitchup is concerned, althou_ the lift coefficient at

which the intability begins to occur is somewhat higher for the cranked

wing. Subsequent plots of Cm against CL for the cranked wing with

extensions (figs. 6 to 9) indicate that the instability is eliminated by

the addition of the trailing-edge inserts. For example, the 200_0 , 13370 ,

and 20070 trailing-edge configurations all h_ve good longitudinal stability

characteristics. For the cases herein where wing trailing-edge modifica-

tions eliminated pitchup for the cranked wings, this pitchup was also

eliminated for the uncranked cases with the _dentlcal modifications (from

unpublished results). Thus, unless there wexe additional considerations,

there would be little in favor of the crankec wing as compared with a low-

aspect-ratio conventional wing.

Aerodynamic Efficiency

Minim_n drag.- In figure ii is presented the variation in minimum

drag coefficient with trailing-edge extension for the various configura-

tions tested. Examination of this figure indicates that increasing the

amount of trailing-edge extension results in a decrease in CD,mi n and

generally an increase in -_(CD,b)min (indicative of the change in actual

drag force). These changes in minimum drag wlth increasing amounts of

trailing-edge extension reflect the combined effects of the changes in

base pressure acting on the trailing edge and the higher skin-friction

drag due to the larger surface area.
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At M = 1.41, both the 0-20050 and 6750-20050 configurations have

approximately the same minimum drag as the basic cranked wing-body (0-0)

and have only a slightly higher drag than the basic configuration at

M = 2.01. Apparently, then, the decrease in wave drag for the 6750

leading-edge configuration (as compared to the 0 leading-edge configura-

tion) is offset by the increased skin friction for the wing with the

larger area.

Lift-curve slope.- The variation of lift-curve slope with trailing-

edge extension is presented in figure 12. As can be seen in the basic

data figures (figs. 6 to 9) the variation of llft coefficient with angle

of attack is essentially linear up to e of about 6° to 8° , and it was

over this linear portion of the curve that the values of CL_ presented

in figure 12 were obtained. It is seen from figure 12 that as the

trailing-edge extension is increased, a reduction in lift-curve slope

results when CL is based on the respective wing areas (primarily due

to the reduction in aspect ratio), but an increase in lift-curve slope

results when the con_non area of the basic wing is used to nondimension-

alize the lift. As might be expected, the configurations with the 20070

trailing edge produced the largest llft forces of all those tested.

Dra 6 due to lift.- The drag-due-to-lift parameter,

CL 2

presented in figure 13 as a function of trailing-edge extension. The

CD - CD'min, is

CD - CD,mi n
values of were obtained from the slope of the curve of CD2

CL

slotted against CL 2 which was essentially linear over the same range

as the lift curve (_ = 6° to 8 ° ) which in every case is beyond the CL

for (L/D)max. Examination of figure 13 indicates that generally the

drag-due-to-lift parameter is represented closely by the reciprocal of

the lift-curve slope (with _ in radians) indicating that the expected

leading-edge suction is not realized and that the resultant-force vector

due to incidence acts normal to the chord. When the coefficients are

based on the individual wing areas, the drag-due-to-lift parameter

increases with increasing amounts of trailing edge extension; however,

when the coefficients are based on a common area, the result is that as

larger trailing-edge extensions are added, the drag-due-to-lift param-

eter decreases (fig. 13(b)). Thus the configurations with trailing-edge

extensions will produce a given lift force with less drag force due to

lift than the basic cranked wing. This result arises from the increase

in CL_,b with traillng-edge extension making it possible to maintain

the same lift at a lower angle of attack with the extended trailing-edge

configurations.
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Maximum lift-drag ratio.- Values of maximum lift-drag ratio are
presented in figure 14 where it is seen that for a particular leading-

edge configuration, the net effect of increasing the trailing-edge

extension is to increase (L/D)ma x. For the case of no leading-edge

suction, the maxim_n lift-drag ratio can be determined by the expression

(L/D)ma x = 0.5 where CL_ is per radian. Thus, with increasing
in

trailing-edge extension, the reduction in CL_ is more than offset by the

reduction in CD,mi n resulting in increased (L/D)max. It can also be

noted in figure 14 that for the same trailing-edge extension, the 6750-X

configurations have about the same (L/D)max as the O-X configurations.

At both Mach numbers, the trailing-edge extensions were successful in

increasing (L/D)ma x up to about 15 percent over that of the basic

cranked wing.

Application of Results

In actual practice, the final selection of the best configuration

would depend on the purpose for which the airplane was to be designed.

For exs_ple, for a high-speed interceptor, the desirability of a low-

drag configuration might outweigh that of having a high (L/D)max, whereas

for a long-range bomber it would be of primsa_ importance to have a high

(L/D)max with sufficient wing volume for carrying sufficient fuel for a

long-range mission.

For the present case of wing-body combiz_tions, the fact that the

drag-due-to-trim is unknown introduces an uncertainty into the choice of

the best configuration. However, for the purposes of the present dis-

cussion it will be assumed that the comparisc_n will be made for operation

at (L/D)ma x with neutral stability. Results of this comparison indi-

cate that the 6750-2050 configuration is attractive, particularly for

CD at M = 1.41, and CL and (L/D)max at M = 2.01 as indicated in

the following table.
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Configuration

6750-20050

M

i .41

2.01

Percentage difference from basic configuration

Exposed-wing CD CL (L/D)max
volume

85 -7 8 15

85 2 21 19

As a matter of interest, the condition for operating at (L/D)ma x

for the 6750-20050 configuration corresponds to a wing loading of

i00 ib/sq ft at 53,000 feet at M = 2.01 and at 40,000 feet at M = 1.41.

Slightly higher gains in (L/D)ma x (at M = 2.01) and considerable gains

in lift (at both Mach numbers) resulted with the 6750-20070 configuration,

but these gains were accompanied by increases in drag of 15 to 20 percent.

As discussed previously, the final selection of the "best" configuration

(even in the present simplified case) would depend on which aerodynamic

characteristics were of primary interest.

One additional point remains to be emphasized; namely, that the data

presented herein were obtained with relatively crude models designed to

facilitate the testing of a large number of configurations with a mini-

mum of construction effort. The results are therefore to be applied more

for indicating trends than for the specific numbers presented since, with

the use of more refined airfoil sections, wing twist and camber, and

improved body design, it is believed that significant increases in maxi-

mum lift-drag ratio and reductions in drag could be realized.

CONCLUDING REMARKS

An investigation has been conducted in the Langley 4- by 4-foot

supersonic pressure tunnel at Mach numbers of 1.41 and 2.01 to determine

the effects of certain plan-form variations on the aerodynamic character-

istics of a family of cranked wings in combination with an ogive-cylinder

body of revolution.

Results of the tests indicate that the best overall characteristics

were obtained with the low-aspect-ratio wings. Plan-form changes which

involved decreasing the aspect ratio resulted in higher values of maximum

lift-drag ratio in addition to large increases in wing volume. Indica-

tions are that this trend would have continued to exist at aspect ratios

even lower than the lowest considered in the present tests. Increases in

the maximum lift-drag ratio of about 15 percent over the basic wing were

achieved with practically no increase in drag.
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The severe longitudinal instability associated with the basic
cranked wing was no longer present (within the limits of the present
tests) on the lower-aspect-ratio wings formed by sweeping forward the
inboard portion of the trailing edge.

Langley Research Center,
National Aeronautics and SpaceAdministration,

Langley Field, Va., August 18, 1999.
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(a) Basic cranked wing (0-0) in combination with body.

Figure 2.- View of representative models.
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(b) The 6750-20070 wing in combination with body. L-92}20

Figure 2.- Concluded.
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Wing _..sl:jnlmea 0-0
,A_o, sq ft 694

Mean aen3dynarnic chord, It 452
Aspect roho 4 000

Exposed w,ng volume,£u ft 0_24

W_g d es_Jr,et_"_ 0-675o

Area, sq ft 868
Meon eetodynelrn¢ chord, fl 639

Aspect ratio 3204

Exposed wing volume, cuft 0150

i

m67_
.938

680

2 965

Ol68

Wm 9 des_tion 0-1335o

Area, sq ft 1042

Meer_ ol_odyrw]rnJc chotcI, ft 857

Aspect rote 2669

Exposed w_ng volutne,cu fl 0177

LJ

0-133_ o

_181
929

2352

0212

Win 9 designer;on 0-2005o

Areo, sq ft 1.2}5
Mean oe_odyrw]m< cho.:lft 1091

Aspect rote 2.289

Exposed ww'_ _olurne,cu ft 0205

]L
//// '

0-200 m
1424

1187

1953

0256

(a) Basic (0) leadilg edge.

Figure 4.- Geometric details of models.
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Wing deslqnal_orl

Areo, sq ft
Mean aerodynamic chord, ft

Aspect ratio

Exposed wng volume, cu ft

675O--0
868

.639

$ 204

0150

Wing des_r_t _:_

Area, sq ft

Meon selx:cdynomic chord, ft

Aspect rohO

Exposed wing volume,cu ft

Wing desk/chart 675o- 133_o

Area, sq fl 1215

Mean oerodyr_mic chod_ ft 1.091

Aspec! roho 2,289

Exposed wing votumej cu ft 0203

Wing designation 675o-2005o

Area, sq ft 135<9

Mean oetodynorn¢ cho_l I ft 1336

Aspect ratio 2000

Exposed w_ng volurne,cu ft .0229

(b) 6750 leading edge.

$
6%-6%

I.HI

.890

2.501

0194

ii

22
2
67. -133._
13_4

1151

2055

675o-200_ o
1.597

1.4 16

1.740

.O282

Figure 4.- Concluded.



2O

.O8

.06

.04

.02

-.5-2 -.I 0 .I .2' .5 .4 .5 .6 .7 .8 .9 -2 -.I 0 .1 .R .3 .4 .5 .6 .7 .8

Lift coefficient, C, Lift coefficient, CL

Figure 5.- Comparison of the aerodynamic characteristics of the swept
and cranked wing-body combinations,
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Figure 6.- Aerodynamic characteristics at M = 1.41 of the family of

cranked wings (in combination with the oody with the basic (0)

leading edge).
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Figure 8.- Aerodynamic characteristics at M = 1.41 of the family of

cranked wings (in combination with the body) with the 6750 leading

edge.
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Figure 14.- Maximum lift-drag ratios for the configurations tested.
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